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Abstract

A secure S–box must exhibit the Strict Avalanche Criterion (SAC), ensuring that a single–bit
change in the input causes each output bit to change with a probability close to 50%, thereby
complicating differential and linear cryptanalysis. Despite its importance, analyses of deployed
ciphers suggest that current S–box designs can still be improved. In this paper, we introduce a
novel recursive method for constructing S–boxes that achieve perfect SAC by leveraging smaller
S–boxes with SAC when combined with bitwise rotations. This approach systematically gener-
ates larger S–boxes while preserving and enhancing the cryptographic strengths of their smaller
counterparts. The resulting S–boxes not onlymeet perfect SAC but also demonstrate competitive
security properties and can be implemented using simple logic circuits, making them especially
suitable for resource-constrained environments. Our findings contribute significantly to S–box
design and offer substantial implications for developing robust cryptographic systems.
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1 Introduction

In the digital age, the importance of cryptography cannot be exaggerated. As we increasingly
rely on electronic systems to store and transmit sensitive information, the need for robust security
measures becomes paramount. Cryptography plays a crucial role in ensuring the confidentiality,
integrity, and authenticity of digital data. The advent of the internet and the proliferation of digi-
tal devices have exponentially increased the volume of data generated and shared every day. This
data, which often includes sensitive personal and financial information, is a prime target for ma-
licious actors. Cryptography provides the necessary tools to protect this data, ensuring that it can
be securely stored and transmitted. Moreover, in an era where privacy concerns are increasingly
coming to the fore, cryptography offers a means to preserve individual privacy in online commu-
nications. Through the use of encryption, users can communicate securely, safe in the knowledge
that their messages can only be read by the intended recipients. Cryptography also underpins the
security of numerousmodern technologies and systems. From online banking and e-commerce to
secure email and blockchain technology, cryptography is a fundamental component that ensures
the security and reliability of these systems.

In the realm of cryptography, few components are as critical and intriguing as cryptographic
S–boxes, or substitution boxes. These non-linear transformation functions form the backbone of
many symmetric key algorithms, playing a pivotal role in ensuring the security of our digital com-
munications. S–boxes serve as the primary source of confusion in a cipher, transforming input bits
into output bits in a manner that the relationship between secret keys and output bits is obscured.
This non-linearity is crucial in thwarting linear and differential cryptanalysis attacks, thereby bol-
stering the security of the cryptographic system. The importance of S–boxes extends beyond their
role in individual ciphers. They are integral to the broader landscape of digital security, underpin-
ning everything from secure online transactions to confidential communications. In an era where
data breaches and cyber threats are increasingly prevalent, the role of S–boxes in safeguarding
sensitive information is more important than ever. However, the design and implementation of
S–boxes are not without challenges. The quest for S–boxes that provide optimal resistance against
known cryptanalytic attacks, while remaining efficient for hardware and software implementa-
tions, is an ongoing area of research.

The field of cryptography haswitnessed significant advancements and diversification in recent
years, with the study of S–boxes remaining a critical focus. However, most publications have con-
centrated on the construction of 4–bit and 8–bit S–boxes. For instance, Isa et al. [22] introduced
an S–box constructed by applying a binomial operation to two power functions defined over the
finite field F28 . Rashidi [40] proposes two 4–bit S–boxes S1 and S2 and two 8–bit S–boxes SB1

and SB2 based on S1 and S2. The approach of using smaller S–boxes to build larger ones does
not provide a general method for generating S–boxes of sizes other than 8–bit. In addition, 8–bit
S–boxes [39, 38] involving composite multiplicative inverses in GF

(
24
)
have also been proposed;

these methods do not clarify how the methodology involving multiplicative inverses in GF
(
24
)

can be adapted to generate S–boxes of sizes other than 8–bit. Furthermore, S–boxes with infor-
mation redundancy [41] for detecting and preventing fault injections have been proposed and
applied to 4–bit S–boxes, such as those in PRESENT [14], PRINCE [15] and SPONGENT [13].
The applicability of this masking technique to S–boxes beyond those used in PRESENT, PRINCE
and SPONGENT or to S–boxes of other sizes remains uncertain.

The emphasis on 5–bit S–boxes arises from their increasing importance in modern crypto-
graphic systems. In 2012, a significant milestone was reached with the selection of Keccak [11] as
the new Secure Hash Algorithm 3 (SHA-3) standard [34]. More recently, the National Institute of
Standards and Technology (NIST) selected Ascon [18], a cipher that employs a 5–bit S–box, as a
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new standard for lightweight cryptography [35]. The advent of SHA-3 and the selection of the As-
con cipher underscore the importance of studying 5–bit S–boxes. Moreover, candidates fromNIST
competitions such as PRIMATEs [6], ICEPOLE [33] and SHAMASH[36] also adopt 5–bit S–boxes.
In fact, S–boxes with an odd size and high differential uniformity, including 5–bit S–boxes, can be
constructed using Almost Perfect Nonlinear (APN) functions, which are predominantly defined
in odd dimensions [9]. These developments indicate that 5–bit S–boxes could play a pivotal role
in the future of cryptography.

Modern cryptographic systems employ Shannon’s principles of confusion and diffusion to en-
sure the security and confidentiality of data transmission. Confusion obscures the relationship
between the secret key and the ciphertext, while diffusion ensures that a single bit change in the
input results in an approximately 50% change in the ciphertext. The confusion layer is a critical
component in providing nonlinearity in symmetric ciphers. This is achieved through the use of a
nonlinear substitution function within the cipher.

A secure S–box should exhibit a strict avalanche criterion (SAC), a widely used measure for
assessing the security of S–boxes. This criterion indicates that even a small change in a single input
bit should propagate rapidly through the cipher, resulting in a high degree of randomness in the
output. The SAC is evaluated by altering a single input bit and observing its effect on the output
bits. Ideally, half of the output bits should change, yielding an optimal SAC value of 0.5. An S–box
with an SAC value closer to 0.5 is deemed stronger. Weak SAC values render a cipher vulnerable
to various cryptanalytic attacks. In contrast, stronger SAC values enhance the diffusion effect of a
cipher. Analyses of Ascon, Keccak, PRIMATEs, and SHAMASH reveal SAC values of absolute 0
or 1, significantly deviating from the ideal SAC value of 0.5.

Increasing the number of rounds can enhance the security of a cipher. The issues caused by
weak SAC values, such as lower diffusion, can be mitigated by increasing the number of rounds.
For instance, in the case of TinyJAMBU, the author increased the number of initialization rounds
from 384 to 640 to improve diffusion [43]. However, increasing the number of rounds results in
higher latency and resource overhead. Achieving good SAC values is a method for addressing
low diffusion, an area where ASCON, Keccak, and PRIMATEs show room for improvement.

Substitution layers, which serve as confusion layers for various cryptographic primitives, can
be generated in multiple ways. One such method is the use of finite field arithmetic, as demon-
strated in AES [10] and Camellia [7]. These substitution layers exhibit high nonlinearity. How-
ever, as shown in Table 1, the substitution layers generated through finite field arithmetic do not
guarantee perfection in terms of Strict Avalanche Criterion (SAC).

Table 1: SAC values of different S–boxes available in the literature.

S–box Minimum SAC value Maximum SAC value Average References

AES 0.4531 0.5625 0.5049 [17]
Camellia S1 0.4531 0.5469 0.4983 [7]
Camellia S2 0.4531 0.5469 0.4983 [7]
Camellia S3 0.4531 0.5469 0.4983 [7]
Camellia S4 0.4531 0.5469 0.4983 [7]

In addition to finite field arithmetic, there are numerous studies that have suggested the gener-
ation of S–boxes using chaotic functions. For example, Rincu and Iana proposed an S–box design
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combining Logistic map, Tent map and Piece-Wise Linear Chaotic Map [42]. Zhou et al. [51]
proposed a novel S–box using chaotic sequences generated from a new two-dimensional discrete
hyperchaotic map. Ali and Ali [5] suggested the generation of a new S–box using a piecewise
linear chaotic map, while Liu et al. [27] proposed an S–box generation algorithm using a non-
degeneracy discrete chaotic system. However, finite precision effects [49], dynamical degradation
of chaotic systems [50], non-uniform distribution [1], and discontinuity in chaotic sequences [4]
can compromise the chaotic properties of these S–boxes.

Several approaches have been proposed to enhance the SAC of S–boxes. Mohd Esa et al. [32]
introduced an alternative primitive polynomial that yields an improved AES S–box with better
SAC. However, the empirical nature of the primitive polynomial selection process leaves the rela-
tionship between primitive polynomials and resulting S–box SAC still unexplored. Li et al. [24]
presented a 4–bit S–box that achieves perfect SAC. Unfortunately, similar toMohd Esa et al.’s work,
the underlying rationale for their design remains undisclosed, preventing its direct application in
creating other S–boxes with perfect SAC.

A straightforward approach to generating a secure S–box involves generating all possible S–
boxes and selecting the one with the most exceptional characteristics. However, this method is
impractical as it would require 2n! steps of computation. To circumvent the exhaustive search
for a perfect S–box, Kim et al. proposed a recursive technique that constructs n–bit S–boxes with
perfect SAC properties from antecedent (n− 1)–bit S–boxes, which also exhibit perfect SAC. De-
spite this smart avoidance of the exhaustive 2n! search, its implementation in logic gate circuits
necessitates constructing the n–bit S–box from two identical (n− 1)–bit S–boxes but fed with two
distinct inputs, resulting in significant area overhead reserved for these (n− 1)–bit S–boxes. We
will demonstrate how the area can be reduced by rotating (n− 1)–bit S–boxes that require only
one input. Further details will be shown in the paper.

In this paper, we propose an S–box with perfect SAC values, constructed using an enhanced
recursive method. Specifically, for a 5–bit S–box, our method enables the generation of 5–bit S–
boxes with perfect SAC values in 237.75 steps, a significant reduction from the 25! ≈ 2117.7 steps
required by exhaustivemethods. Our approach facilitates the production of S–boxeswith superior
nonlinearity and iterative periods. Furthermore, these S–boxes can be implemented using simpler
logic gate circuits compared to the work by Kim et al. [23]. This research contributes to the field
by offering an efficient and effective method for S–box construction.

The following notations are used in this paper;

P (X) : Probability of an event X .
+ : Addition over GF (2).
Sn : An n–bit S–box.
Sna : The Boolean function of a-th bit of Sn
Sn (x) : The value of n–bit S–box, Sn, with input vector x.
Sn∗ : An incomplete Snwith one remaining unassigned output bit.
HW (x) : The Hamming weight of vector x.
xi : The i-th bit of x starting from the least significant bit.
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2 Preliminaries

The Strict Avalanche Criterion (SAC) ensures that a small change in the input, even asminimal
as flipping a single bit, should cause drastic changes in the output. This property is crucial for
creating confusion in the ciphertext, thereby enhancing the security of the cryptographic system.
In more precise terms, an S–box satisfies the SAC if, for every output bit, a change in each input
bit affects each output bit with a probability of 0.5. This means that each output bit should be
a complex and non-linear function of the input bits, making it computationally difficult for an
attacker to predict the output based on the input, or vice versa. In the field of cryptography, it
is generally accepted that an S–box exhibiting a SAC value approximating 0.5 is indicative of its
robustness.

Avalanche property of Sn is measured by calculating the probability of change of Snr for
0 ≤ r < n, given an input change∆xwhereHW (∆x) = 1. The ideal value for SAC is 0.5, meaning
that P (Snr (x) + Snr (x+∆x) = 1) = 0.5. The SAC of Snr can be calculated using (1),

δ (Snr,x,∆x) =
#{x ∈ Fn

2 |Snr (x) + Snr (x+∆x) = 1}
2n

, (1)

where δ (Snr,x,∆x) denotes P (Snr (x) + Snr (x+∆x) = 1). In the remaining sections of this
paper, we denote λ (f, g,x) as P (f (x) + g (x) = 1) for any functions f and g. An S–box that ex-
hibits perfect SAC must satisfy both Propositions 2.1 and 2.2.

Proposition 2.1. For HW (∆x) = 1, it is required that the probability δ (Snr,x,∆x) > 0. In this case,
every variable {x0, x1, . . . , xr−1} must exist in all terms of Snr with nonzero coefficients.

Proof. If xs ∈ {x0, x1, . . . , xr−1} is not a term or a subterm of any monomials within Snr , then
Snr (x) + Snr (x+∆x) = 0, thus δ (Snr,x,∆x) = 0.

In order for perfect SAC to be satisfied, it is necessary that δ (Snr,x,∆x) = 0.5. This implies
that all input variables must be present as a term or in any subterms of all Snr with nonzero
coefficients.

Proposition 2.2. For any xs ∈ {x0, x1, . . . , xs−1} that only exists as a nonzero linear term in Snr(x),
flipping the value of xs will flip the right-hand-side of Snr(x) with a probability of 1.

Proof. The behavior of XOR operations within a Boolean equation implies that flipping any term
will result in a corresponding change in the value of Snr (x).

It is important to note that an algebraic term exhibiting an absolute linear relationship with the
Boolean function will invariably induce changes with a probability of 1 when the input is altered.
As such, it is imperative that the Boolean functions of S–boxes are designed to avoid this property.

In addition to Propositions 2.1 and 2.2, an n–bit bijective S–box must have a maximum degree
of n− 1 [20]. As a result, the degree of all terms in Snr (x)must be bounded by n− 1.
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3 Construction of S–box

We construct S–boxes by adopting an approach similar to the recursive method proposed by
Kim et al. [23]. Kim’s method relies on using smaller S–boxes to build larger ones. For an n–bit
S–box Sn that is constructed based on anm–bit S–box withm = n− 1, the following holds,

Sn (x) = Sm (x) ,

Sn (x+ 2m) = Sm (x+∆x) .
(2)

As shown in (2), Kim’s method necessitates the use of both Sm (x) and Sm (x+∆x) for the
generation ofSn. This implementation, however, may complicate the circuit, as itmust incorporate
both Sm (x) and Sm (x+∆x).

In this paper, we improve Kim’s method by generating Sn solely from Sm (x), making the
implementation simpler and easier. We discuss the rationale in detail in Section 6.

Similar to Kim’s method, our construction of a 5–bit S–box is initiated by first constructing a
3–bit S–box S3which satisfies a perfect strict avalanche criterion. We formulated simple degree-2
near-bent polynomials [47] for a 3–bit S–box with input variables xa, xb, and xc for three output
bits, as illustrated in (3),

S30 = xaxb + xaxc + xb,

S31 = xaxb + xbxc + xc + 1,

S32 = xaxc + xbxc + xa.

(3)

Based on the values of S3, we create a 4–bit S–box, S4∗. For any random integer v, the assignment
of S4∗ (x) is shown in (4),

S4∗ (x) =

{
S3 (x) , for x < 23,

S3
(
x+ 23

)
<<< v, for x ≥ 23.

(4)

The construction of S4∗ based on (4) is not completed yet, as there is still an unassigned output
bit S4∗3 ∈ {α0, α1, . . . , α15} as shown in Table 2. To complete the 24 output values of S4∗, we need
to determine the new output bit of S4∗ to form perfect SAC for S4.

In order to determine the values ofS43, which, when combinedwith the values generated from
(4), we search for all 16 candidate values, i.e., (α0, α1, . . . , α15), as shown in Table 2. The number
of computations required is

(
2n

2n−1

)
, since, in a bijective S–box Sn, both #{Snr (x) |Snr (x) = 0}

and #{Snr (x) |Snr (x) = 1} are equal to 2n−1 for all 0 ≤ r < n. In the case of computing the
values of S43,

(
16
8

)
≈ 213.65 is required. Therefore, generating all 4–bit S–boxes from all 3! possible

S3with 3 possible rotations v, the total required computation of it is
(
16
8

)
·3! ·3 = 217.82. Algorithm

1 shows the generation of 4–bit S–boxes.
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Table 2: Values of S4 derived from S3.

x S4 (x) S43 S42 S41 S40

0 S3 (0) α0 S32 (0) S31 (0) S30 (0)

1 S3 (1) α1 S32 (1) S31 (1) S30 (1)

2 S3 (2) α2 S32 (2) S31 (2) S30 (2)

3 S3 (3) α3 S32 (3) S31 (3) S30 (3)

4 S3 (4) α4 S32 (4) S31 (4) S30 (4)

5 S3 (5) α5 S32 (5) S31 (5) S30 (5)

6 S3 (6) α6 S32 (6) S31 (6) S30 (6)

7 S3 (7) α7 S32 (7) S31 (7) S30 (7)

8 S3 (0) <<< v α8 S32−v (0) S31−v (0) S3−v (0)

9 S3 (1) <<< v α9 S32−v (1) S31−v (1) S3−v (1)

10 S3 (2) <<< v α10 S32−v (2) S31−v (2) S3−v (2)

11 S3 (3) <<< v α11 S32−v (3) S31−v (3) S3−v (3)

12 S3 (4) <<< v α12 S32−v (4) S31−v (4) S3−v (4)

13 S3 (5) <<< v α13 S32−v (5) S31−v (5) S3−v (5)

14 S3 (6) <<< v α14 S32−v (6) S31−v (6) S3−v (6)

15 S3 (7) <<< v α15 S32−v (7) S31−v (7) S3−v (7)

Algorithm 1 The algorithm for generating 4–bit S–boxes with perfect SAC
1: procedure GenerateS4(An empty group of S–boxes, S4)
2: for all possible 3–bit S–box S3 based on (3) do
3: for all 0 ≤ v < 3 do
4: Initialize an empty S4.
5: for all x from 0 to 7 do
6: S4 (x)← S3 (x)
7: S4 (x+ 8)← S3 (x) <<< v

8: end for
9: for all l from 0 to 216 such that HW (l) = 8 do
10: for all j from 0 to 15 do
11: Assign S43 (j) as l

2j mod 2
12: end for
13: if S4 fulfills bijectivity and perfect SAC then
14: S4 ∪ {S4}
15: end if
16: end for
17: end for
18: end for
19: return S4
20: end procedure

Generating a 5–bit S–box, S5, fulfiling perfect SAC is also done in a similar fashion. For 0 ≤ j < 32,
S5∗ (j) can be assigned with S4 (j), while S5∗ (16 + j) is assigned with S4 (j) rotated by another

939



K. Pang et al. Malaysian J. Math. Sci. 19(3): 933–959(2025) 933 - 959

random integer, w, as shown in (5),

S5∗ (x) =

{
S4 (x) , for x < 24,

S4
(
x+ 24

)
<<< w, for x ≥ 24.

(5)

The new output bit, S5∗4 ∈ {β0, β1, . . . , β31}, can be found in
(
32
16

)
≈ 229.16 steps. With h number

of S4s generated from (4), where each S4 can produce four S5∗s with all four possible rotations
w, the total number of steps required is

(
16
8

)
· 3! · 3 +

(
32
16

)
· 4h. Algorithm 2 shows the generation

of S5s. Table 3 shows the new bits of S5s.

Algorithm 2 The algorithm for generating 5–bit S–boxes with perfect SAC
1: Initialize an empty list S4.
2: S4← GenerateS4(S4).
3: S4←MinimizeS4(S4, t).
4: Create an empty list S5.
5: for all S4 ∈ S4 do
6: for all 0 ≤ w < 4 do
7: Initialize an empty S5.
8: for all x from 0 to 16 do
9: S5 (x)← S4 (x)
10: S5 (x+ 16)← S4 (x) <<< w

11: end for
12: for all w from 0 to 232 such that HW (w) = 16 do
13: for all u from 0 to 31 do
14: Assign S54 (u) as w

2u mod 2
15: end for
16: if S5 fulfills bijectivity and perfect SAC then
17: S5 ∪ {S5}
18: end if
19: end for
20: end for
21: end for
22: return S5.
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Table 3: Values of S5 derived from S4.

x S5 (x) S54 S53 S52 S51 S50

0 S4 (0) β0 S43 (0) S42 (0) S41 (0) S40 (0)

1 S4 (1) β1 S43 (1) S42 (1) S41 (1) S40 (1)

2 S4 (2) β2 S43 (2) S42 (2) S41 (2) S40 (2)

3 S4 (3) β3 S43 (3) S42 (3) S41 (3) S40 (3)

4 S4 (4) β4 S43 (4) S42 (4) S41 (4) S40 (4)

5 S4 (5) β5 S43 (5) S42 (5) S41 (5) S40 (5)

6 S4 (6) β6 S43 (6) S42 (6) S41 (6) S40 (6)

7 S4 (7) β7 S43 (7) S42 (7) S41 (7) S40 (7)

8 S4 (8) β8 S43 (8) S42 (8) S41 (8) S40 (8)

9 S4 (9) β9 S43 (9) S42 (9) S41 (9) S40 (9)

10 S4 (10) β10 S43 (10) S42 (10) S41 (10) S40 (10)

11 S4 (11) β11 S43 (11) S42 (11) S41 (11) S40 (11)

12 S4 (12) β12 S43 (12) S42 (12) S41 (12) S40 (12)

13 S4 (13) β13 S43 (13) S42 (13) S41 (13) S40 (13)

14 S4 (14) β14 S43 (14) S42 (14) S41 (14) S40 (14)

15 S4 (15) β15 S43 (15) S42 (15) S41 (15) S40 (15)

16 S4 (0) <<< w β16 S43−w (0) S42−w (0) S41−w (0) S4−w (0)

17 S4 (1) <<< w β17 S43−w (1) S42−w (1) S41−w (1) S4−w (1)

18 S4 (2) <<< w β18 S43−w (2) S42−w (2) S41−w (2) S4−w (2)

19 S4 (3) <<< w β19 S43−w (3) S42−w (3) S41−w (3) S4−w (3)

20 S4 (4) <<< w β20 S43−w (4) S42−w (4) S41−w (4) S4−w (4)

21 S4 (5) <<< w β21 S43−w (5) S42−w (5) S41−w (5) S4−w (5)

22 S4 (6) <<< w β22 S43−w (6) S42−w (6) S41−w (6) S4−w (6)

23 S4 (7) <<< w β23 S43−w (7) S42−w (7) S41−w (7) S4−w (7)

24 S4 (8) <<< w β24 S43−w (8) S42−w (8) S41−w (8) S4−w (8)

25 S4 (9) <<< w β25 S43−w (9) S42−w (9) S41−w (9) S4−w (9)

26 S4 (10) <<< w β26 S43−w (10) S42−w (10) S41−w (10) S4−w (10)

27 S4 (11) <<< w β27 S43−w (11) S42−w (11) S41−w (11) S4−w (11)

28 S4 (12) <<< w β28 S43−w (12) S42−w (12) S41−w (12) S4−w (12)

29 S4 (13) <<< w β29 S43−w (13) S42−w (13) S41−w (13) S4−w (13)

30 S4 (14) <<< w β30 S43−w (14) S42−w (14) S41−w (14) S4−w (14)

31 S4 (15) <<< w β31 S43−w (15) S42−w (15) S41−w (15) S4−w (15)

From the S5s generated, we propose a candidate, P, that possesses large nonlinearity, large
iterative period, and has neither fixed points nor inverse fixed points. The proposed S–box is
presented in Table 4.
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Table 4: Input and output pairs of P.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (x) 10 6 8 25 19 20 23 13 17 11 16 12 5 2 31 14

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (x) 21 28 1 3 22 24 30 27 18 7 0 9 26 4 15 29

4 Performance Analysis

The evaluation of a nonlinear component encompasses several aspects, including bijectivity,
nonlinearity, strict avalanche criterion, bit-independence criterion, differential approximation, and
linear approximation. These aspects have been discussed in various studies, such as Carlet et al.’s
work on identifying cryptographically strong S–boxes based on the sum of S–box values in matrix
form and the difference in Hamming weights between inputs and outputs [16], and Durasevic et
al.’s search for S–boxes ranging from 4–bit to 8–bit with high boomerang uniformity [19].

We conduct a comparison of the security resultswith other published 5–bit S–boxes, such as the
S–boxes of aforementioned Ascon [18] and Keccak [11], as well as S–boxes utilized in PRIMATEs
[6], ICEPOLE [33], and SHAMASH [36]. Additionally, we compare our generated S–box with a
recent novel 5–bit S–box proposed by Thakor et al. [44].

Themethod introduced byKimet al. [23] can be employed to generate S–boxes of various sizes,
including 5–bit S–boxes. To the best of our knowledge, we strive to generate the most optimal S–
box, K, that possesses the highest possible nonlinearity using this method. Table 5 shows K that
we have generated.

Table 5: Input and output pairs ofK.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K (x) 24 26 23 27 9 6 29 28 18 0 3 31 30 1 20 5

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

K (x) 10 8 11 7 22 25 12 13 16 2 15 19 17 14 21 4

4.1 Bijectivity

An S–box exhibits the property of bijectivity when each input is mapped to a unique output.
This ensures that no two different inputs are mapped to the same output and that no output re-
mains unmapped. The bijectivity of an S–box can be determined using (6) [21]. For an n–bit
S–box and for all y,

#{x|Sn(x) = y} = 1. (6)
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In our method, initially, S3 was generated for S4 (i), while S (8 + i) was assigned the rotated
values of S3. A search process consisting of 216 steps was then employed to identify S4, with the
condition that only bijective S–boxes were retained. This process preserves the bijectivity of S4.
The same method was used to generate S5 from S4. Similarly, a 232-step approach was utilized to
generate bijective 5–bit S–boxes. As a result, the selected S–box satisfied the criteria for bijectivity.

4.2 Nonlinearity

The nonlinearity of a function is a measure of its ability to resist linear attacks [26]. The non-
linearity, NL, of function f is given by (7) [28], where Wf (a) represents the Walsh Hadamard
Transform of f(x) and is defined asWf (a) =

∑
x∈Fn

2
(−1)f(x)+a·x for all a ∈ Fn

2 ,

NL(f) = 2n−1
(
1− 2−n max |Wf (a)|

)
. (7)

The proposed S–box P achieves an average nonlinearity of 10.8, which aligns with crypto-
graphic robustness criteria for resisting linear cryptanalysis. This value is higher than those of
Ascon and Keccak. Table 6 details the nonlinearity distribution across the five output bits of P,
while Table 7 provides a comparative analysis of its average nonlinearity against benchmark S–
boxes.

Table 6: Nonlinearity of P.

NL (P0) 12
NL (P1) 10
NL (P2) 10
NL (P3) 10
NL (P4) 12

5 Bit-Independence Criterion

The bit-independence criterion [31] stipulates that each input bit should influence every output
bit such that the alterations in the output bits are independent of each other. The independence
between the changes in each output bit can be analyzed by measuring the nonlinearity [3] (refer
to Section 4.2) and SAC [8] (refer to Section 2) of Snr + Sns for all 0 ≤ r, s < nwhere r ̸= s.

The average BIC-nonlinearity of P is 9.8, indicating satisfactory cryptographic performance.
The maximum and minimum BIC-SAC values are 0.5125 and 0.475, respectively, which are very
close to the ideal value of 0.5. Tables 8 and 9 present the BIC and BIC-SAC of P, respectively.
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Table 7: Comparison of S–boxes.

Ascon Keccak PRIMATEs ICEPOLE Shamash Thakor’s S–box K Our work (P)

Lowest 8 8 12 8 12 8 8 10

Highest 8 8 12 8 12 10 12 12Nonlinearity
Average 8 8 12 8 12 8.4 8.8 10.8

Lowest 0 0 0.5 0.125 0.5 0.25 0.5 0.5

Highest 1 1 1 0.875 1 0.75 0.5 0.5SAC
Average 0.62 0.4 0.54 0.425 0.6 0.54 0.5 0.5

Lowest 8 8 12 8 12 8 8 8

Highest 12 12 12 12 12 10 12 10BIC-Nonlinearity
Average 11.2 10 12 10 12 9 9.2 9.8

Lowest 0.3 0.5 0.5 0.5 0.5 0.45 0.4 0.475

Highest 0.6 0.6 0.6 0.6 0.5 0.575 0.6 0.55BIC-SAC
Average 0.52 0.55 0.51 0.55 0.5 0.5075 0.49 0.5125

Differential uniformity,D 8 8 2 8 2 8 32 6

Linear probability, L 0.25 0.25 0.125 0.25 0.125 0.25 0.5 0.25

Number of fixed points 0 2 0 0 1 0 0 0

Number of inverse fixed points 0 0 2 2 0 1 0 0

Shortest iterative period 6 1 2 2 1 4 16 32

References [18] [11] [6] [33] [36] [44] [23] This paper

Table 8: BIC-nonlinearity of proposed S–box.

Sk+l l = 0 l = 1 l = 2 l = 3 l = 4

k = 0 - 10 10 10 10
k = 1 10 - 10 10 10
k = 2 10 10 - 10 10
k = 3 10 10 10 - 8
k = 4 10 10 10 8 -

Table 9: BIC-SAC of proposed S–box.

Sk+l l = 0 l = 1 l = 2 l = 3 l = 4

k = 0 - 0.4750 0.5250 0.4750 0.5500
k = 1 0.4750 - 0.5250 0.5250 0.5250
k = 2 0.5250 0.5250 - 0.5000 0.5250
k = 3 0.4750 0.5250 0.5000 - 0.5000
k = 4 0.5500 0.5250 0.5250 0.5000 -
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5.1 Differential uniformity

Differential cryptanalysis [12] represents a significant method of attack in the annals of cryp-
tography. The resilience of Sn to differential cryptanalysis can be quantified using (8),

D = max
∆x∈Fn

2 ,∆y∈Fn
2

(# (∆y = Sn (x) + Sn (x+∆x))) , (8)

where ∆x,∆y ̸= 0. A lower value of differential uniformity, D, signifies a stronger resistance of
the S–box to differential cryptanalysis [45]. Furthermore,D also denotes themaximumdifferential
value of the Difference Distribution Table.

The D value of P is 6, which is lower than those of Ascon, Keccak, ICEPOLE, and Thakor’s
S–boxes. This result is summarised in Table 7. Table 12 presents the difference distribution table
of P.

5.2 Linear probability

Linear cryptanalysis [30] is another prominent cryptanalytic attack in the field of cryptography.
The robustness of Sn against this form of cryptanalysis can be evaluated using (9),

L = max
Γx∈Fn

2 ,Γy∈Fn
2

∣∣∣∣#(y · Γy = Sn (x · Γx))

2n
− 1

2

∣∣∣∣ , (9)

where linearmasks Γx,Γy ̸= 0. An S–box exhibits stronger resistance to linear cryptanalysis when
it has a lower linear probability, L. Additionally, L represents the maximum linear value of the
Linear Approximation Table.

The L value of P is 0.25, matching those of Ascon, Keccak, and most of the S–boxes being
compared here. The L values for all S–boxes under comparison are summarized in Table 7. The
linear approximation table of P is presented in Table 13.

5.3 Fixed points, reverse fixed points and short period ring

In order to construct a secure S–box, it is imperative to identify and eliminate the presence of
fixed points, reverse fixed points, and short period rings [2]. A fixed point, as defined in [46],
occurs when an input value in an S–box maps directly to itself, as illustrated in (10). Conversely,
a reverse fixed point is a scenario where the input of an n–bit S–box maps to its own bitwise
complement, as depicted in (11),

Sn (x) = x, (10)
Sn (x) = 2n − 1− x. (11)

The presence of fixed points within an S–box can potentially expose secret data to an attacker
through intercepted ciphertext [29]. Consequently, it is crucial to ensure that the finalized S–box
is devoid of any fixed points [48]. Furthermore, a strong S–box should circumvent short iterative
periods [25], a condition where fm (x) = x holds true for a small value ofm.

As shown in Table 7, there are no fixed points or inverse fixed points inP. The iterative period
of P is 32, which is the highest achievable since there are only 25 = 32 entries in a 5–bit S–box.
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Table 7 presents the number of fixed points and inverse fixed points, as well as the iterative periods
of all S–boxes analyzed in this paper.

5.4 SAC comparison with other S–boxes

The S–boxes of Ascon and Keccak display SAC values of an absolute 0 or 1. In contrast, the
S–boxes of PRIMATE and SHAMASH demonstrate better SAC conditions, albeit with an absolute
SAC value of 1. Thakor’s S–box does not exhibit SAC values of absolute 0 or 1, instead presenting
a minimum SAC value of 0.25 and a maximum of 0.75. The S–box of ICEPOLE displays a broader
range of SAC values, with a minimum of 0.125 and a maximum of 0.875. K and P, do not exhibit
SAC values of absolute 0 or 1 either, but they demonstrate a more consistent set of values at 0.5.
Table 10 presents the SAC values for five output bits of P. As illustrated in Table 7, P adheres
strictly to a perfect SAC value of 0.5, distinguishing it from other S–boxes.

Table 10: SAC of proposed S–box.

∆x 20 21 22 23 24

δ (P0,x,∆x) 0.5 0.5 0.5 0.5 0.5
δ (P1,x,∆x) 0.5 0.5 0.5 0.5 0.5
δ (P2,x,∆x) 0.5 0.5 0.5 0.5 0.5
δ (P3,x,∆x) 0.5 0.5 0.5 0.5 0.5
δ (P4,x,∆x) 0.5 0.5 0.5 0.5 0.5

6 Rationale Behind Recursive Construction of S–boxes

Generation of S5 candidates is initiated from S3s as elucidated in Section 3. Our findings
indicate that xaxb + xaxc + xb satisfies a perfect strict avalanche criterion as shown in Table 11. A
constant 1 is added to the polynomial of f1 to prevent fixed points. This gives 23 possible output
of S3which is the result of using a 3–bit S–box.

The generation of 3–bit S–boxes utilizes a fundamental Boolean function, xaxb + xaxc + xb,
which incorporates all input variables xa, xb and xc, as demonstrated in Proposition 2.1. Addition-
ally, the function avoids the characteristic of any xr existing solely in linear terms, as emphasized
in Proposition 2.2.

The presence of the constant 1 at S31 in (3) might initially appear superfluous, given that the
security implications for the intermediate variables S3 and S4 are not substantial. Nevertheless,
the absence of this constant results in a lack of solutions based on our experimental data. The
inclusion of the constant 1 proves beneficial in stimulating a larger pool of potential candidates, as
it facilitates an increased number of options during the generation of the remaining bits for S4 and
S5. To illustrate, when S4 (0) = 0, the remaining bit for S5 (0) can only be 1 in order to prevent
fixed points such that S5 (0) = 16.
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Table 11: Characteristics of polynomials generated for S3.

Polynomials
Fulfiling Fulfiling Maximum degree Perfect SAC

BijectiveProposition Proposition not exceeding (Proposition 6.4)
2.1 2.2 n− 1

S30 = xa

S31 = xb

S32 = xc

✔ ✔

S30 = xa + xb

S31 = xa + xc

S32 = xb + xc

✔

S30 = xaxb

S31 = xaxc

S32 = xbxc

✔ ✔

S30 = xaxb + xc

S31 = xaxc + xb

S32 = xbxc + xa

✔ ✔

S30 = xaxb + xaxc

S31 = xaxb + xbxc

S32 = xaxc + xbxc

✔ ✔ ✔ ✔

S30 = xaxb + xaxc + xa

S31 = xaxb + xbxc + xb

S32 = xaxc + xbxc + xc

✔ ✔ ✔ ✔

S30 = xaxb + xaxc + xb

S31 = xaxb + xbxc + xc

S32 = xaxc + xbxc + xa

✔ ✔ ✔ ✔ ✔

Both Sn∗ (x) and Sn∗ (x+ 2n−1
)
are assigned from Sm (v)wherem = n− 1, as shown in (4)

and (5). Equation (12) shows the generalization of both equations with a random number u,

Sn∗ (x) =

{
Sm (x) , for x < 2m,

Sm (x) <<< u, for x ≥ 2m.
(12)

From (12), it can be observed that Sn∗
r is derived from two output bits of Sm, which are Smr

for Sn∗
r (0) to Sn∗

r (2
m − 1) and Sms for Sn∗

r (2
m) to Sn∗

r (2
n − 1). Sm with perfect SAC can be

used for generating Sn that also possesses perfect SAC as well. This characteristic is supported by
Propositions 6.1, 6.2, 6.3, and 6.4.

Proposition 6.1. λ (Smr, Sms,x) = 0.5.

Proof. Due to bijectivity of Sm, λ (Smr, Sms,x) is equivalent to P (xr + xs = 1).
Since P (xr + xs = 1) = 0.5,

λ (Smr, Sms,v) = 0.5.

Proposition 6.2. If Sm has perfect SAC, one of its characteristics is that for t = 0 and 0 ≤ p < 2m−1−t ,
δ (Smr, 2p, 1) = 0.5.
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Proof. According to (1), when ∆x = 1, δ (Smr,x,∆x) is effectively δ (Smr, 2p, 1).
Since δ (Smr,x,∆x) is stipulated to be 0.5, δ (Smr, 2p, 1)must also be 0.5.

Proposition 6.3. If Sm has perfect SAC, one of its characteristics is that for 1 ≤ t ≤ m − 1, 0 ≤ q < 2t

and 0 ≤ p <
2m−1

2t
, δ (Smr, 4

tp+ q, 2t) = 0.5.

Proof. δ (Smr,x,∆x) is equivalent to δ (Smr, 4
tp+ q, 2t)when 22 ≤ ∆x ≤ 2m−1 . Since

δ (Smr,x,∆x) = 0.5 to fulfill the principle of perfect SAC, δ (Smr, 4
tp+ q, 2t)must also be 0.5.

Proposition 6.4. When Sm has perfect SAC, the resultant Sn∗ will also have perfect SAC.

Proof. As shown in (12), Sn∗
r is derived from Smr and Sms. When ∆x = 2n−1, the function

δ (Sn∗
r ,x,∆x) is equivalent to λ (Smr, Sms,x). Given that Sm exhibits perfect SAC, it follows that

λ (Smr, Sms,x) = 0.5, which consequently leads to δ (Sn∗
r ,x,∆x) = 0.5 as stated in Proposition

6.1.

For 1 ≤ ∆x ≤ 2n−2, the function δ (Sn∗
r ,x,∆x) is equivalent to δ (Smr, 2p, 1) for∆x = 1, while

δ (Sn∗
r ,x,∆x) is equivalent to δ (Smr, 4

tp+ q, 2t) for 22 ≤ ∆x ≤ 2m−1. According to Propositions
6.2 and 6.3, if Sm exhibits perfect SAC, both δ (Smr, 2p, 1) and δ (Smr, 4

tp+ q, 2t) must equal 0.5,
resulting in δ (Sn∗

r ,x,∆x) = 0.5. Given that δ (Sn∗
r ,x,∆x) = 0.5 for all possible values of ∆x, it

can be concluded that Sn∗ also exhibits perfect SAC.

The S–box construction proposed in this paper guarantees the existence of a connection among
all output bits of the S–boxes, which is a requirement for achieving a perfect SAC as stated in
Proposition 6.5.

Proposition 6.5. For an n–bit S–box, Sn and its antecedent (n− 1)–bit S–box Sm, if
Sn∗ (2n−1 + x

)
= Sn∗ (x) = Sm (x) for all 0 ≤ v < 2n−1, then Sn0, Sn1, . . . , Snn−2 are independent

of Snn−1.

Proof. Since 2n−1 + x ≡ x
(
mod 2n−1

)
and Sn∗ (2n−1 + x

)
= Sn∗ (x), Snn−1 is independent of

the other n− 1 output bits of Sn.

When generating a 4–bit S–box, the value from S4∗ (x+ 8) is rotated from S4∗ (x). This ap-
proach is utilized to ensure that the precomputed three bits of the resulting 4–bit S–box are inter-
connected with the remaining bit in accordance with Proposition 2.1. Similarly, for the generation
of 5–bit S–boxes, the value from S5∗ (x+ 16) is rotated from S5∗ (x) to prevent independence
between the remaining bit and the other 4 output bits.

The proposed S–box can be constructed using logic gates as follows. Please note that we de-
scribe the operations based on the order of operations used in theGCC compiler, where the bitwise
AND operation (∧) is performed first, followed by XOR (

⊕
) and OR (∨) operations,

S30 = x0 ∧ (x1 ⊕ x2)⊕ x2,

S31 = x2 ∧ (x0 ⊕ x1)⊕ x1,

S32 = x1 ∧ (x0 ⊕ x2)⊕ x0,

S43 = x2 ∨ x0 ⊕ x3 ∧ x1 ∧ x0 ⊕ x3 (x2 ∨ x1) ,
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S42 = x3 ∧ S30 ∨ x3 ∧ S32,

S41 = x3 ∧ S32 ∨ x3 ∧ S31,

S40 = x3 ∧ S31 ∨ x3 ∧ S30,

S54 = x1 ∧ x0 ⊕ x2 (x4 ∨ x1)⊕ x3 ∧ x1 ∧ x0 ⊕ x4 (x1 ∨ x0)⊕ x3 ∧ x2 ∧ x1 ∧ x0 ⊕ x4 ∧ x3 (x2 ∧ x0) ,

S53 = x4 ∧ S42 ∨ x4 ∧ S43,

S52 = x4 ∧ S41 ∨ x4 ∧ S42,

S51 = x4 ∧ S40 ∨ x4 ∧ S41,

S50 = x4 ∧ S43 ∨ x4 ∧ S40.

The only output bits that vary among all S5s are S43 and S54, due to random generations. Al-
though S30, S31, and S32 also vary among all S5s, the structure of their logical expression remains
identical, i.e., xa∧ (xb ⊕ xc)⊕xc. The remaining output bits can be derived based on the values of
their antecedent S–boxes, rendering our S–box lightweight and equipped with a simple logic gate
circuit.

In contrast to Kim et al. [23]’s proposal, our approach generates S5 solely from S3 (x) and
S4 (x), thereby simplifying the overall process. Kim’s method requires not only the computation
ofS3 (x) andS4 (x) but also those computed using the inputx+∆x, which necessitates additional
memory cells. In our work, we allocate 3 memory cells for storing S30 (x), S31 (x), and S32 (x),
and 4 memory cells for storing S40 (x), S41 (x), S42 (x), and S43 (x). In Kim’s method, these
same cells for the original input are required in addition to an extra 3 cells for storingS30 (x+∆x),
S31 (x+∆x), and S32 (x+∆x), as well as another 4 cells for storing S40 (x+∆x), S41 (x+∆x),
S42 (x+∆x), and S43 (x+∆x). This distinction is further illustrated in the logic circuit of K
shown below,

S30 (x) = x1 ⊕ x2 (x0 ⊕ x1) ,

S31 (x) = x0 ∧ x1 ⊕ x1 ∧ x2,

S32 (x) = x1 ∧ x0 ⊕ x0 ∧ x2,

S30 (x+ 1) = x1 ⊕ x2 (x0 ⊕ x1) ,

S31 (x+ 1) = x0 ∧ x1 ⊕ x1 ∧ x2,

S32 (x+ 1) = x1 ∧ x0 ⊕ x0 ∧ x2,

S43 (x) = x1 ∨ x3 ⊕ x0 (x1 ⊕ x2)⊕ x2 (x1 ⊕ x3) ,

S42 (x) = x3 ∧ S32 (x+ 1) ∨ x3 ∧ S32 (x) ,

S41 (x) = x3 ∧ S31 (x+ 1) ∨ x3 ∧ S31 (x) ,

S40 (x) = x3 ∧ S30 (x+ 1) ∨ x3 ∧ S30 (x) ,

S43 (x+ 1) = x1 ∨ x3 ⊕ x0 (x1 ⊕ x2)⊕ x2 (x1 ⊕ x3) ,

S42 (x+ 1) = x3 ∧ S32 (x) ∨ x3 ∧ S32 (x+ 1) ,

S41 (x+ 1) = x3 ∧ S31 (x) ∨ x3 ∧ S31 (x+ 1) ,

S40 (x+ 1) = x3 ∧ S30 (x) ∨ x3 ∧ S30 (x+ 1) ,

S54 = x1 ∧ x2 ⊕ x3 ∧ x4 ⊕ x3 (x0 ⊕ x1 ⊕ x2),

S53 = x4 ∧ S43 (x+ 1) ∨ x4 ∧ S43 (x) ,

S52 = x4 ∧ S42 (x+ 1) ∨ x4 ∧ S42 (x) ,

S51 = x4 ∧ S41 (x+ 1) ∨ x4 ∧ S41 (x) ,

S50 = x4 ∧ S40 (x+ 1) ∨ x4 ∧ S40 (x) .
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In terms of gate counts, our implementation employs fewer gates than Kim’s method. Specif-
ically, our design requires 13 XOR gates, 31 AND gates, 11 OR gates, and 17 NOT gates, whereas
Kim’s approach uses 30 XOR gates, 37 AND gates, 12 OR gates, and 23 NOT gates. Overall, the
reduced gate counts in our work demonstrate a more efficient implementation compared to Kim’s
method.

Algorithm 3 The algorithm for picking 4–bit S–boxes that surpasses S
1: procedureMinimizeS4(A set S4, S)
2: Initialize an empty set T.
3: for all S4 ∈ S4 do
4: Create an empty list S5.
5: for all 0 ≤ u < 4 do
6: for all 0 ≤ x < 24 do
7: S5∗ (x)← S4 (x)
8: S5∗

(
x+ 24

)
← S4 (x) <<< u

9: end for
10: end for
11: sum← 0
12: A ← 1
13: for all 0 ≤ p < 4 do
14: sum← sum+NL

(
S5∗p

)
.

15: if δ (fp,x,△x) ̸= 0.5where HW (∆x) = 1 then
16: A ← 0
17: end if
18: end for
19: if sum ≥ S andA = 1 then
20: T ∪ {S5∗}
21: end if
22: end for
23: return T.
24: end procedure

7 Optimization

The process for generating S5 candidates can be expedited further by discarding unfavourable
S5∗ candidates. Since S5∗ S–boxes are still incomplete, one method to accomplish this involves
pre-screening S5∗ S–boxes based on their nonlinearity and SAC values. These values can be com-
puted for each output bit separately, unlike other security criteria discussed in Section 4, which
require the evaluation of the entire S–box.

Let S5 be a group consisting of all generated S5∗, we define S as in (13),

S = max
S5∗∈S5

(
3∑

u=0

NL (S5∗u)

)
. (13)

In our experiment, we have determined S = 42 by (7). To optimize the search process for 5–bit
S–boxes, we employ the MinimizeS4() function in Algorithm 3 to filter out S5∗ that do not meet S,
by setting S as the threshold. As a result, we have identified 96 S–boxes that meet S, as detailed
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in Appendix 9.2. The algorithm for picking favourable S5s is outlined in Algorithm 3. As a result,
this computation only requires

(
16
8

)
· 3! · 3 +

(
32
16

)
· 4 · 96 ≈ 237.75 steps.

8 Conclusions

This paper presented an improved recursive method for constructing 5–bit S–boxes that sat-
isfy perfect SAC. The proposed method efficiently generates S–boxes with strong cryptographic
properties, including high nonlinearity, optimal iterative periods, and perfect SAC values. Addi-
tionally, the design facilitates practical implementation using simple logic gate circuits, making
it suitable for lightweight cryptographic applications. The findings demonstrate the practicality
and effectiveness of the proposed method in achieving secure and efficient S–box designs.

8.1 Future work

The method proposed in the paper results in the construction of S–boxes characterized by a
high algebraic degree. While this property can be advantageous in certain cryptographic applica-
tions due to its contribution to non-linearity and resistance to specific cryptanalytic attacks, it may
also introduce significant challenges in practical implementations. In particular, the elevated al-
gebraic degree tends to increase the complexity of achieving a secure Threshold Implementation,
as it requires additional resources to prevent leakage and ensure robustness against side-channel
attacks [37]. Addressing this challenge and exploring efficient approaches to implement such
S–boxes securely is left as an open problem for future research.
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9 Appendix

9.1 Differential distribution and linear approximation

Tables 12 and 13 show the difference distribution table and linear approximation table of the
proposed S–box.

Table 12: Differential distribution table of the proposed S–box.

S5 (x)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 4 2 4 0 0 0 2 2 0 0 0 0 0 2 0 0 0 2 4 0 0 0 2 2 0 0 0 0 0 6
2 0 0 2 0 2 0 0 2 0 4 0 0 2 0 2 2 0 2 2 2 2 2 0 0 2 0 2 0 0 0 0 2
3 0 0 0 0 0 2 0 2 0 0 2 6 0 2 2 0 0 0 0 0 0 2 0 2 0 0 2 2 0 6 2 0
4 0 2 4 2 2 0 0 2 0 0 2 0 0 0 2 0 0 0 0 0 2 2 0 0 2 4 0 0 2 0 0 4
5 0 0 0 2 0 0 2 2 0 0 0 6 0 4 0 0 0 0 0 2 0 0 2 2 0 0 0 2 0 4 4 0
6 0 0 0 2 0 0 0 0 0 0 2 0 0 4 4 0 0 0 0 2 0 4 4 0 0 0 2 0 0 4 4 0
7 0 4 2 0 0 2 0 0 0 2 2 0 4 0 0 0 0 0 2 0 0 2 0 4 0 2 2 0 0 0 4 0
8 0 4 0 0 0 2 0 2 2 0 0 2 4 0 0 0 0 0 0 2 0 0 6 0 2 0 2 2 0 2 0 0
9 0 0 2 0 2 0 0 4 2 0 0 0 0 0 2 4 0 2 2 0 2 0 0 2 0 0 0 0 0 0 4 4
10 0 0 4 2 0 4 0 0 0 0 0 0 2 0 0 0 0 0 0 0 4 2 0 0 0 4 6 0 0 0 0 4
11 0 2 0 2 0 0 4 2 0 0 0 4 2 0 0 0 0 2 0 0 0 2 2 0 4 0 2 0 2 2 0 0
12 0 0 0 2 0 0 0 0 0 2 2 0 2 0 0 4 0 0 0 0 4 2 0 0 4 6 0 0 4 0 0 0
13 0 2 0 2 0 0 2 2 2 0 2 0 2 2 0 0 0 2 0 0 0 2 4 0 2 0 0 4 2 0 0 0
14 0 2 0 2 0 2 4 0 2 0 0 2 2 0 0 0 0 2 0 0 0 0 2 2 2 0 2 2 2 2 0 0
15 0 4 2 2 2 0 0 2 2 2 0 0 0 0 0 0 0 2 6 2 2 0 0 0 0 2 0 0 0 0 2 0
16 0 0 0 2 0 0 4 0 0 2 4 0 0 0 0 4 4 0 0 2 0 4 0 0 0 2 0 0 4 0 0 0
17 0 0 2 0 0 2 4 0 2 0 0 0 0 0 2 4 0 2 0 0 0 0 2 4 0 0 0 2 2 0 2 2
18 0 0 2 2 2 0 4 0 4 0 0 0 2 0 0 0 0 0 2 2 2 0 0 0 0 0 0 4 6 0 0 0
19 0 2 0 0 2 0 0 0 2 0 0 2 2 0 0 2 2 0 2 2 2 0 0 4 2 0 0 2 0 2 2 0
20 0 2 0 0 0 2 0 0 2 4 0 0 2 4 0 0 0 4 2 0 0 4 2 0 0 0 0 2 0 0 0 2
21 0 2 4 0 2 0 0 0 0 0 0 0 0 2 2 0 2 4 2 2 0 2 2 2 0 0 0 0 0 2 2 0
22 0 0 0 0 2 2 2 0 2 2 2 2 0 0 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 0 2
23 0 0 4 0 0 2 0 0 2 0 2 4 0 0 0 2 4 4 0 0 0 2 0 0 2 0 2 0 0 0 0 2
24 0 2 0 2 0 0 2 0 4 0 2 0 0 2 2 0 2 4 0 0 0 0 0 0 2 6 0 0 2 0 0 0
25 0 0 0 0 2 0 0 4 0 4 4 0 0 4 6 0 0 0 0 0 0 0 0 2 2 0 0 2 0 0 2 0
26 0 2 0 2 2 2 2 0 0 4 0 0 0 0 0 2 8 0 2 2 0 0 0 2 0 0 0 0 2 0 0 0
27 0 0 0 2 4 0 0 0 2 0 0 2 2 4 0 0 0 0 2 2 0 0 2 0 0 2 2 2 2 0 0 2
28 0 2 0 2 0 2 2 0 0 2 2 0 2 2 0 0 2 0 2 4 0 0 0 0 0 0 4 0 0 0 2 2
29 0 0 0 0 0 4 0 4 0 0 2 0 0 0 4 2 2 2 4 2 0 0 2 0 0 0 2 2 0 0 0 0
30 0 0 0 0 2 4 0 2 0 0 0 2 2 0 0 4 4 0 2 0 2 0 2 2 0 0 0 0 0 2 2 0
31 0 0 0 0 2 0 0 2 0 2 2 0 0 2 2 0 2 0 0 2 6 0 0 2 2 0 0 2 0 4 0 0
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Table 13: Linear approximation table of the proposed S–box.

S5 (x)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 4 6 -2 4 0 -2 -2 2 -2 0 0 -2 2 0 8 2 -2 0 0 2 -2 -4 -4 4 0 2 2 4 0 -2 -2
2 0 0 0 0 -2 2 6 2 -2 -2 2 2 4 0 0 4 -4 4 0 0 -2 -6 2 -2 2 2 2 -6 4 0 4 0
3 0 0 6 2 6 2 0 0 0 0 2 -2 -2 2 4 -4 -2 -2 0 4 -4 0 2 2 -2 -2 -4 0 4 0 6 -2
4 0 4 2 -6 -2 -2 -4 0 0 -4 -2 -2 -2 -2 0 4 -4 4 -2 2 -2 2 4 4 -4 -4 2 -2 -2 2 0 0
5 0 -4 -4 0 -6 2 -2 -2 -6 -2 2 -2 -4 4 4 4 -2 -2 2 2 0 4 -4 0 0 0 0 0 2 -2 2 -2
6 0 -4 -2 -2 0 -4 -6 2 -2 2 -4 4 -2 2 0 0 4 4 -2 2 -4 -4 2 -2 2 2 -4 0 2 2 0 -4
7 0 0 0 0 0 0 0 -8 0 0 0 0 0 0 -8 0 -2 2 2 6 2 -2 -2 2 -2 2 -6 -2 2 -2 -2 2
8 0 0 0 0 0 -4 0 4 0 -4 -4 0 -4 -4 0 0 -2 -6 2 -2 6 -2 2 2 -2 6 -2 -2 2 -2 2 -2
9 0 -4 -2 -2 0 0 2 -2 -2 -2 0 -4 2 -2 0 0 -4 -4 -2 2 0 -4 6 -2 2 -2 0 8 2 2 -4 0
10 0 0 -4 -4 2 2 -2 -2 6 -6 2 -2 -4 0 0 -4 -2 2 2 -2 -4 0 0 -4 4 4 0 0 -2 -2 2 2
11 0 0 2 -2 -2 6 -4 0 -4 0 6 -2 -2 -6 -4 -4 4 0 -2 -2 2 -2 0 0 0 0 2 -2 2 2 0 -4
12 0 4 -2 6 -2 2 0 0 4 4 2 -2 -2 -2 0 4 -2 2 0 0 0 4 6 -2 2 2 -4 0 0 0 -2 -6
13 0 4 0 -4 -2 2 -2 2 2 2 2 2 4 4 4 -4 -4 0 0 4 2 -2 -2 2 -2 6 2 2 0 0 -4 -4
14 0 -4 -2 -2 4 4 -2 2 2 2 4 0 2 -2 0 8 2 -2 0 0 -2 -2 0 4 -4 4 -2 2 -4 0 2 2
15 0 0 0 0 0 4 0 4 0 -4 4 8 -4 4 0 0 0 0 0 0 4 0 4 0 0 -4 -4 0 0 0 -4 4
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 2 -6 -6 2 -2 -2 -6 2 -2 -2 6 6 -6 2
17 0 4 -2 -2 0 4 2 2 -2 2 -4 -4 -2 2 0 0 0 -4 2 2 0 -4 -2 -2 2 -2 -4 -4 -6 6 0 0
18 0 4 -4 8 2 2 -2 -2 -2 -6 -2 2 0 0 0 0 2 -2 -2 2 -4 -4 0 0 -4 0 4 0 -2 -2 -2 -2
19 0 4 2 2 -2 -2 -4 0 -4 0 2 2 2 -6 4 0 -4 0 -2 -2 -2 -2 -4 0 4 0 -6 2 -2 -2 0 4
20 0 0 -2 2 -2 -6 0 0 4 -4 6 2 2 -2 0 0 2 -2 4 4 0 0 -2 2 2 -2 0 0 0 8 2 -2
21 0 0 0 0 -2 2 -2 2 2 2 -2 -2 0 -4 4 0 4 0 8 4 -2 -2 2 2 2 -2 2 -2 4 -4 -4 4
22 0 4 -2 -2 4 0 -2 -2 -6 -2 0 0 6 2 0 0 2 2 8 -4 2 2 4 0 0 0 -2 2 0 0 2 -2
23 0 0 0 0 0 0 0 -8 0 0 0 0 0 0 8 0 4 0 -4 0 4 0 4 0 0 4 0 -4 0 4 0 4
24 0 0 0 0 0 4 0 -4 0 4 -4 8 -4 -4 0 0 -4 0 4 0 0 0 0 0 0 0 4 4 0 4 4 0
25 0 4 -2 -2 4 -4 6 2 -6 2 4 0 -6 -2 0 0 2 2 0 4 -2 2 0 0 0 4 2 2 0 0 -2 2
26 0 -4 0 4 6 2 -2 2 -2 -2 -2 -2 0 0 0 0 -4 4 0 0 2 2 -2 6 6 2 2 -2 0 4 -4 0
27 0 4 -2 -2 -2 2 0 0 0 0 -2 2 2 2 -4 0 2 -6 -4 0 -4 4 2 6 6 2 0 0 4 0 2 2
28 0 0 -6 -2 6 -2 -4 0 0 4 2 2 2 -2 0 0 -4 -4 -2 2 2 2 0 -4 0 -4 2 -6 2 -2 0 0
29 0 0 -4 -4 2 2 6 -2 2 -2 -2 2 0 -4 4 0 2 2 -2 -2 0 0 -4 4 0 -4 -4 0 2 -2 -2 -6
30 0 -4 6 -2 0 0 2 -2 -2 -2 0 4 2 -2 0 0 0 -4 2 2 -4 4 2 -2 2 2 0 -4 -6 -2 -4 -4
31 0 0 0 0 0 -4 0 -4 0 4 4 0 -4 4 0 0 -2 -2 2 -6 -2 -6 2 6 2 -2 2 -2 -2 -2 -2 -2
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9.2 4–bit S–boxes that yield 5–bit S–boxes with high nonlinearities

Tables 14 and 15 present the 4–bit S–boxes derived from our experiment, which in turn able to
generate 5–bit S–boxes exhibiting high degrees of nonlinearity.

Table 14: 4–bit S–boxes that yield 5–bit S–boxes with high nonlinearities (Part 1).

Input
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 8 11 7 6 9 4 5 12 0 14 15 13 2 1 3
2 0 11 15 6 9 4 13 12 8 14 7 5 10 1 3
10 0 11 15 6 1 4 13 12 8 14 7 5 2 9 3
2 0 11 15 14 1 12 5 4 8 6 7 13 10 9 3
10 8 3 7 6 9 4 13 12 0 14 15 5 2 1 11
2 8 3 7 14 9 12 5 4 0 6 15 13 10 1 11
10 8 3 7 14 1 12 5 4 0 6 15 13 2 9 11
2 0 3 15 14 1 12 13 4 8 6 7 5 10 9 11
10 8 3 7 14 1 12 5 9 0 13 15 11 4 2 6
2 0 11 15 14 1 12 5 9 8 13 7 3 4 10 6
2 0 3 15 14 1 12 13 9 8 5 7 11 4 10 6
2 8 3 7 14 9 12 5 1 0 13 15 11 4 10 6
10 0 11 15 6 1 4 13 9 8 5 7 3 12 2 14
10 8 11 7 6 9 4 5 1 0 13 15 3 12 2 14
10 8 3 7 6 9 4 13 1 0 5 15 11 12 2 14
2 0 11 15 6 9 4 13 1 8 5 7 3 12 10 14
2 0 6 9 11 15 4 13 12 8 5 10 14 7 1 3
10 8 6 9 11 7 4 5 12 0 13 2 14 15 1 3
2 0 14 1 11 15 12 5 4 8 13 10 6 7 9 3
10 0 6 1 11 15 4 13 12 8 5 2 14 7 9 3
2 8 14 9 3 7 12 5 4 0 13 10 6 15 1 11
10 8 6 9 3 7 4 13 12 0 5 2 14 15 1 11
2 0 14 1 3 15 12 13 4 8 5 10 6 7 9 11
10 8 14 1 3 7 12 5 4 0 13 2 6 15 9 11
10 8 14 1 3 7 12 5 9 0 11 4 13 15 2 6
2 0 14 1 3 15 12 13 9 8 11 4 5 7 10 6
2 0 14 1 11 15 12 5 9 8 3 4 13 7 10 6
2 8 14 9 3 7 12 5 1 0 11 4 13 15 10 6
10 0 6 1 11 15 4 13 9 8 3 12 5 7 2 14
10 8 6 9 3 7 4 13 1 0 11 12 5 15 2 14
10 8 6 9 11 7 4 5 1 0 3 12 13 15 2 14
2 0 6 9 11 15 4 13 1 8 3 12 5 7 10 14
10 11 8 7 6 4 9 5 12 14 0 15 13 1 2 3
10 11 0 15 6 4 1 13 12 14 8 7 5 9 2 3
2 11 0 15 6 4 9 13 12 14 8 7 5 1 10 3
2 11 0 15 14 12 1 5 4 6 8 7 13 9 10 3
10 3 8 7 6 4 9 13 12 14 0 15 5 1 2 11
10 3 8 7 14 12 1 5 4 6 0 15 13 9 2 11
2 3 8 7 14 12 9 5 4 6 0 15 13 1 10 11
2 3 0 15 14 12 1 13 4 6 8 7 5 9 10 11
10 3 8 7 14 12 1 5 9 13 0 15 11 2 4 6
2 11 0 15 14 12 1 5 9 13 8 7 3 10 4 6
2 3 0 15 14 12 1 13 9 5 8 7 11 10 4 6

S4

2 3 8 7 14 12 9 5 1 13 0 15 11 10 4 6
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Table 15: 4–bit S–boxes that yield 5–bit S–boxes with high nonlinearities (Part 2).

Input
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 11 0 15 6 4 1 13 9 5 8 7 3 2 12 14
10 11 8 7 6 4 9 5 1 13 0 15 3 2 12 14
10 3 8 7 6 4 9 13 1 5 0 15 11 2 12 14
2 11 0 15 6 4 9 13 1 5 8 7 3 10 12 14
2 6 0 9 11 4 15 13 12 5 8 10 14 1 7 3
2 14 0 1 11 12 15 5 4 13 8 10 6 9 7 3
10 6 0 1 11 4 15 13 12 5 8 2 14 9 7 3
10 6 8 9 11 4 7 5 12 13 0 2 14 1 15 3
2 14 0 1 3 12 15 13 4 5 8 10 6 9 7 11
2 14 8 9 3 12 7 5 4 13 0 10 6 1 15 11
10 6 8 9 3 4 7 13 12 5 0 2 14 1 15 11
10 14 8 1 3 12 7 5 4 13 0 2 6 9 15 11
2 14 0 1 3 12 15 13 9 11 8 4 5 10 7 6
2 14 0 1 11 12 15 5 9 3 8 4 13 10 7 6
10 14 8 1 3 12 7 5 9 11 0 4 13 2 15 6
2 14 8 9 3 12 7 5 1 11 0 4 13 10 15 6
10 6 0 1 11 4 15 13 9 3 8 12 5 2 7 14
2 6 0 9 11 4 15 13 1 3 8 12 5 10 7 14
10 6 8 9 3 4 7 13 1 11 0 12 5 2 15 14
10 6 8 9 11 4 7 5 1 3 0 12 13 2 15 14
10 11 6 4 0 15 1 13 12 14 5 9 8 7 2 3
10 11 6 4 8 7 9 5 12 14 13 1 0 15 2 3
2 11 6 4 0 15 9 13 12 14 5 1 8 7 10 3
2 11 14 12 0 15 1 5 4 6 13 9 8 7 10 3
10 3 6 4 8 7 9 13 12 14 5 1 0 15 2 11
10 3 14 12 8 7 1 5 4 6 13 9 0 15 2 11
2 3 14 12 0 15 1 13 4 6 5 9 8 7 10 11
2 3 14 12 8 7 9 5 4 6 13 1 0 15 10 11
2 11 14 12 0 15 1 5 9 13 3 10 8 7 4 6
2 3 14 12 0 15 1 13 9 5 11 10 8 7 4 6
10 3 14 12 8 7 1 5 9 13 11 2 0 15 4 6
2 3 14 12 8 7 9 5 1 13 11 10 0 15 4 6
10 11 6 4 0 15 1 13 9 5 3 2 8 7 12 14
2 11 6 4 0 15 9 13 1 5 3 10 8 7 12 14
10 11 6 4 8 7 9 5 1 13 3 2 0 15 12 14
10 3 6 4 8 7 9 13 1 5 11 2 0 15 12 14
10 6 11 4 0 1 15 13 12 5 14 9 8 2 7 3
2 6 11 4 0 9 15 13 12 5 14 1 8 10 7 3
2 14 11 12 0 1 15 5 4 13 6 9 8 10 7 3
10 6 11 4 8 9 7 5 12 13 14 1 0 2 15 3
2 14 3 12 0 1 15 13 4 5 6 9 8 10 7 11
10 6 3 4 8 9 7 13 12 5 14 1 0 2 15 11
10 14 3 12 8 1 7 5 4 13 6 9 0 2 15 11
2 14 3 12 8 9 7 5 4 13 6 1 0 10 15 11
2 14 3 12 0 1 15 13 9 11 5 10 8 4 7 6
2 14 11 12 0 1 15 5 9 3 13 10 8 4 7 6
10 14 3 12 8 1 7 5 9 11 13 2 0 4 15 6
2 14 3 12 8 9 7 5 1 11 13 10 0 4 15 6
10 6 11 4 0 1 15 13 9 3 5 2 8 12 7 14
2 6 11 4 0 9 15 13 1 3 5 10 8 12 7 14
10 6 3 4 8 9 7 13 1 11 5 2 0 12 15 14

S4

10 6 11 4 8 9 7 5 1 3 13 2 0 12 15 14
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